Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 341: 123001, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38000723

RESUMEN

Microorganisms are of great significance for arsenic (As) toxicity amelioration in plants as soil fertility is directly affected by microbes. In this study, we innovatively explored the effects of indigenous cyanobacteria (Leptolyngbya sp. XZMQ) and plant growth-promoting bacteria (PGPB) (Bacillus XZM) on the growth and As absorption of sunflower plants from As-contaminated soil. Results showed that single inoculation and co-inoculation stimulated the growth of sunflower plants (Helianthus annuus L.), enhanced enzyme activities, and reduced As contents. In comparison to the control group, single innoculation of microalgae and bacteria in the rhizosphere increased extracellular polymeric substances (EPS) by 21.99% and 14.36%, respectively, whereas co-inoculation increased them by 35%. Compared with the non-inoculated group, As concentration in the roots, stems and leaves of sunflower plants decreased by 38%, 70% and 41%, respectively, under co-inoculation conditions. Inoculation of Leptolyngbya sp. XZMQ significantly increased the abundance of nifH in soil, while co-inoculation of cyanobacteria and Bacillus XZM significantly increased the abundance of cbbL, indicating that the coupling of Leptolyngbya sp. XZMQ and Bacillus XZM could stimulate the activity of nitrogen-fixing and carbon-fixing microorganisms and increased soil fertility. Moreover, this co-inoculation increased the enzyme activities (catalase, sucrase, urease) in the rhizosphere soil of sunflower and reduced the toxic effect of As on plant. Among these, the activities of catalase, peroxidase, and superoxide dismutase decreased. Meanwhile, co-inoculation enables cyanobacteria and bacteria to attach and entangle in the root area of the plant and develop as symbiotic association, which reduced As toxicity. Co-inoculation increased the abundance of aioA, arrA, arsC, and arsM genes in soil, especially the abundance of microorganisms with aioA and arsM, which reduced the mobility and bioavailability of As in soil, hence, reduced the absorption of As by plants. This study provides a theoretical basis for soil microbial remediation in mining areas.


Asunto(s)
Arsénico , Bacillus , Cianobacterias , Helianthus , Contaminantes del Suelo , Catalasa , Arsénico/toxicidad , Rizosfera , Raíces de Plantas/química , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
2.
J Environ Manage ; 345: 118858, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37647731

RESUMEN

Biological soil crusts (BSCs) are a useful tool for immobilization of metal(loid)s in mining areas. Yet, the typical functional microorganisms involved in promoting the fast development of BSCs and their impacts on arsenic(As) contaminated soil remain unverified. In this study, As-contaminated soil was inoculated with indigenous Chlorella thermophila SM01 (C. thermophila SM01), Leptolyngbya sp. XZMQ, isolated from BSCs in high As-contaminated areas and plant growth-promoting (PGP) bacteria (Bacillus XZM) to construct BSCs in different manners. After 45 days of ex-situ culture experiment, Leptolyngbya sp. XZMQ and bacteria could form obvious BSCs. Compared to single-inoculated microalgae, the co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased soil pH and water content by 10% and 26%, respectively, while decreasing soil EC and density by 19% and 14%, respectively. The soil catalase, alkaline phosphatase, sucrase, and urease activities were also increased by 30.53%, 96.24%, 154.19%, and 272.17%, respectively. The co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM drove the formation of BSCs by producing large amounts of extracellular polymeric substances (EPS). The three-dimensional fluorescence spectroscopy (3D-EEM) analysis showed that induced BSCs increased As immobilization by enhancing the contents of tryptophan and tyrosine substances, fulvic acid, and humic acid in EPS. The presence of the -NH2 and -COOH functional groups in tryptophan residues were determined using Fourier Transform Infrared Spectroscopy (FTIR). X-Ray Diffraction (XRD) analysis showed that there were iron (hydrogen) oxides in BSCs, which could form ternary complexes with humic acid and As, thereby increasing the adsorption of As. Therefore, BSCs formed by co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased the immobilization of As, thereby reducing the content of soluble As in the environment. In summary, our findings innovatively provided a new method for the remediation of As-contaminated soil in mining areas.


Asunto(s)
Arsénico , Bacillus , Chlorella , Microalgas , Suelo , Sustancias Húmicas , Triptófano
3.
Sci Total Environ ; 858(Pt 2): 159884, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334665

RESUMEN

Iron (Fe)-manganese (Mn) minerals formed in situ can be used for the natural remediation of the primary poor-quality groundwater with coexistence of arsenite [As(III)], Mn(II), and Fe(II) (PGAMF). However, the underlying mechanisms of immobilization and coupling of As, Mn, and Fe during in-situ formation of Fe-Mn minerals in PGAMF remains unclear. The simultaneous immobilization and coupling of arsenic (As), Mn, and Fe in PGAMF during in-situ formation of biogenic Fe-Mn minerals induced by O2 perturbations and indigenous bacteria (Comamonas sp. RM6) were investigated at the different molar ratios of Fe(II):Mn(II) (1:1, 2:1, and 3:1). Compared with systems without Fe(II) in the presence of Mn(II), the coexisted Fe(II) significantly enhanced Mn(II) bio-oxidation and mineral precipitation, resulting in As immobilization increased by 5, 7, and 7 times at initial Fe(II) concentration of 0.3, 0.6, and 0.9 mM, respectively. Moreover, the As(III) immobilization efficiencies in Mn(II) and Fe(II) mixed system at initial Fe(II) concentration of 0.3, 0.6, and 0.9 mM were 73%, 91%, and 92%, respectively, that were significantly higher than those of single Fe(II) system (30%, 59%, and 74%) and those of single Mn(II) system (12%), indicating that Fe(II) and Mn(II) oxidation synergically enhanced As(III) immobilization. This was mainly attributed to the formation and As adsorption capacity of biogenic Fe-Mn minerals (BFMM). The formed BFMM significantly facilitated simultaneous immobilization of Fe, Mn, and As in PGAMF by oxidation, adsorption, and precipitation/coprecipitation, a coupling of biological, physical, and chemical processes. Fe component was mainly responsible for As fixation, and Mn component dominated As(III) oxidation. Based on the results from this work, biostimulation and bioaugmentation techniques can be developed for in-situ purification and remediation of PGAMF. This work provides insights into the simultaneous immobilization of pollutants in PGAMF, as well as promising strategies for in-situ purification and remediation of PGAMF.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Manganeso , Oxígeno , Hierro , Minerales , Bacterias , Oxidación-Reducción , Compuestos Ferrosos
4.
Biosens Bioelectron ; 100: 355-360, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28946107

RESUMEN

In order to achieve high predictive value of cell chemosensitivity test for clinical efficacy, cancer cells were suggested to be encapsulated and cultured in hydrogel to mimic the natural microenvironment of tumors. However, handling 3D cells/hydrogel culture construct is tedious and cellular response is difficult to be quantitatively analyzed. In the current study, a novel platform for conducting 3D cell culture and analyzing cell viability has been developed towards a high throughput drug screening. Cells encapsulated in the hydrogel were cultured in the microwells of a paper substrate. The substrate was then immersed in the culture medium containing drug for 2 days. At 24 and 48h during the culture course, the paper substrate was placed on the measurement electrodes for conducting the impedance measurement in order to quantify the cell viability in the hydrogel. Cell viability of two human hepatoma cell lines (Huh7 and Hep-G2) was quantitatively investigated under the treatment of two drugs (doxorubicin and etoposide). The results represented by IC50 values revealed that Huh7 cells had a higher drug resistance than Hep-G2 cells and doxorubicin had a higher efficacy than etoposide for treating hepatocellular carcinoma. The current work has demonstrated a high throughput, convenient, and quantitative platform for the investigation of chemosensitivity of cells cultured in the 3D environment.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Ensayos de Selección de Medicamentos Antitumorales/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Impedancia Eléctrica , Diseño de Equipo , Etopósido/farmacología , Células Hep G2 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Papel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...